0
These parameters describe the circuit in terms of its depth (gates/factories) and width (qubits), as in circuit complexity theory, with the added abstraction of logical to physical qubits to account for the cost of error correction. These estimates can provide stakeholders with a better understanding of how quantum computing will actually perform by 2030 and beyond.
While RE is certainly useful, the methodology currently has two aspects that limit its generalizability and predictive power:
Estimates are technology and context dependent. Because tools rely on intermediate representations and instruction sets, their results pertain to the capabilities of specific physical modalities that are in constant flux. Estimates are also influenced by error budget parameters (specific to application). Exploring the impact of these parameters in a quantum chemistry simulation on a hypothetical fault-tolerant device, Quetschlich et al. varied operation speed (time regime), error rate, and factory number to obtain physical qubit estimates ranging from 6.04 million (non-Majorana) to 1.30 million (Majorana). Furthermore, varying the number of factories reduced physical qubit requirement to 1.08 million (Majorana), though with a significant increase in runtime.
Resource estimates may misrepresent true requirements for the following reasons:
It is important to note that the absence of evidence for quantum advantage in one area does not diminish its likelihood elsewhere, such as in finance, and that such advantage can only be demonstrated or disproven on a case-by-case basis. Additionally, more efficient error correction and initial state preparation methods could be developed as quantum computing scales, causing physical estimates to decrease significantly. Nevertheless, RE is useful for estimating algorithm performance on near-term systems and for setting the upper-bound for fault-tolerant system requirements (if costs such as initial state preparation are included). Researchers can use RE to compare algorithm performance within the limitations of ancillary code to develop better algorithms for future systems, and for stakeholders, it represents the best estimate of what will be possible under the future paradigm.
Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J. S., Menke, T., Mok, W.-K., Sim, S., Kwek, L. C., & Aspuru-Guzik, A. (2021). Noisy intermediate-scale quantum (NISQ) algorithms. arXiv preprint arXiv:2101.08448. https://arxiv.org/abs/2101.08448
Chen, Z., Lu, Y., Wang, H., Liu, Y., & Li, T. (2025). Quantum Langevin dynamics for optimization. arXiv preprint arXiv:2311.15587. https://arxiv.org/abs/2311.15587
Elmegreen, B. G., Welser-Sherrill, L., Muller, A., Murayama, K., & Ziegelmayer, R. (2025). Integration of quantum accelerators into HPC: Toward a unified quantum platform. 2025 IEEE International Conference on Quantum Computing and Engineering (QCE), 1-10. https://www.computer.org/csdl/proceedings-article/qce/2024/413701a774/23oq5CvRekE
Google Quantum AI. (2024). Qualtran: Python library for expressing and analyzing fault tolerant quantum algorithms [Software]. GitHub. https://github.com/quantumlib/Qualtran
Han, J. Y., Cheng, B., Vu, D.-L., & Rebentrost, P. (2025). Quantum advantage for multi-option portfolio pricing and valuation adjustments. arXiv preprint arXiv:2203.04924. https://arxiv.org/abs/2203.04924
Harrigan, M. P., Khattar, T., Yuan, C., Peduri, A., Yosri, N., Malone, F. D., Babbush, R., & Rubin, N. C. (2024). Expressing and analyzing quantum algorithms with Qualtran. arXiv preprint arXiv:2409.04643. https://arxiv.org/abs/2409.04643
IBM Quantum. (2023). Charting the course to 100,000 qubits. IBM Quantum Computing Blog. https://www.ibm.com/quantum/blog/100k-qubit-supercomputer
ISI USC. (2024). pyLIQTR: Lincoln Laboratory Quantum Algorithm Test and Research [Software]. GitHub. https://github.com/isi-usc-edu/pyLIQTR
Kockum, A. F., Arvidsson-Shukur, D., Campbell, E., Cerezo, M., Cincio, L., Coles, P. J., & García-Pérez, G. (2025). Lecture notes on quantum computing. arXiv preprint arXiv:2311.08445. https://arxiv.org/abs/2311.08445
Lee, S., Lee, J., Zhai, H., Tong, Y., Dalzell, A. M., Kumar, A., Helms, P., Gray, J., Cui, Z.-H., Liu, W., Kastoryano, M., Babbush, R., Preskill, J., Reichman, D. R., Campbell, E. T., Valeev, E. F., Lin, L., & Chan, G. K.-L. (2023). Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37587-6
Lin, L., & Tong, Y. (2022). Heisenberg-limited ground state energy estimation for early fault-tolerant quantum computers. arXiv preprint arXiv:2102.11340. https://arxiv.org/abs/2102.11340
London, C., Brown, D., Xu, W., Vatansever, S., Langmead, C. J., Kartsaklis, D., Clark, S., & Meichanetzidis, K. (2023). Peptide binding classification on quantum computers. arXiv preprint arXiv:2311.15696. https://arxiv.org/abs/2311.15696
Low, G. H., & Chuang, I. L. (2019). Hamiltonian simulation by qubitization. Quantum, 3, 163. https://doi.org/10.22331/q-2019-07-12-163
McKinsey Digital. (2025). The year of quantum: From concept to reality in 2025. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-year-of-quantum-from-concept-to-reality-in-2025
Microsoft Azure Quantum. (2024). Azure Quantum Resource Estimation. Microsoft Corporation. https://quantum.microsoft.com/en-us/insights/education/concepts/resource-estimation
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O'Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1). https://doi.org/10.1038/ncomms5213
Quetschlich, N., Soeken, M., Murali, P., & Wille, R. (2025). Utilizing resource estimation for the development of quantum computing applications. 2025 IEEE International Conference on Quantum Computing and Engineering (QCE), 1-8. https://www.computer.org/csdl/proceedings-article/qce/2024/413701a232/23oq1tykVRC
Scholten, T. L., Williams, C. J., Moody, D., Mosca, M., Hurley, W., Zeng, W. J., Troyer, M., & Gambetta, J. M. (2024). Assessing the benefits and risks of quantum computers. arXiv preprint arXiv:2401.16317. https://arxiv.org/abs/2401.16317
Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N., & Woerner, S. (2020). Option pricing using quantum computers. Quantum, 4, 291. https://doi.org/10.22331/q-2020-07-06-291
van Dam, W., Mykhailova, M., & Soeken, M. (2024). Using Azure Quantum Resource Estimator for assessing performance of fault tolerant quantum computation. arXiv preprint arXiv:2311.05801. https://arxiv.org/abs/2311.05801
Whitfield, J. D., Zimborás, Z., Aspuru-Guzik, A., Berry, D., & Kivlichan, I. D. (2022). Quantum computing 2022. arXiv preprint arXiv:2201.09877. https://arxiv.org/abs/2201.09877
Yeter-Aydeniz, K., Siopsis, G., & Pooser, R. C. (2021). Scattering in the Ising model with the quantum Lanczos algorithm. New Journal of Physics, 23(4), 043033. https://doi.org/10.1088/1367-2630/abe63d
Zapata Computing. (2024). BenchQ: Resource estimation for fault-tolerant quantum computation [Software]. GitHub. https://github.com/zapatacomputing/benchq
Disclaimer: The author is completely responsible for the content of this article. The opinions expressed are their own and do not represent IEEE's position nor that of the Computer Society nor its Leadership.